If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-72x-24=0
a = 12; b = -72; c = -24;
Δ = b2-4ac
Δ = -722-4·12·(-24)
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-24\sqrt{11}}{2*12}=\frac{72-24\sqrt{11}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+24\sqrt{11}}{2*12}=\frac{72+24\sqrt{11}}{24} $
| 29=31-t | | 8m+62=2/2 | | 3.5x=11=-3 | | 7+9q=8qq= | | 3(x+6)=29 | | 2y^2+3y-6=36 | | (5x+3)=(x-4) | | 3(x+5)^2-2=13 | | 92-j=29 | | 2w+2(22)=74 | | z/9+24=28 | | ((3 | | 1.3=d+6.4 | | 4*7=a | | 3x+18x=8x-17 | | 8=8x=40 | | 3x-(9(x)=0 | | (19^6x)+1=53 | | j-12+7=-12 | | 8.9=7.2-i | | 4.6-+3x=18 | | -15-g/3=-3 | | (n+1)(3n+7)=0 | | 12=x=33 | | 7x-16=3x+14 | | x+x=5236 | | X+0.05x=1000 | | 2x-3/3x-10=14 | | 3x=9(x=6) | | 11/4=a-3/16 | | 7x49=63 | | 0=2w^2+11w-350 |